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Abstract. We point out that the generalized spherical model, as a limit of the isotropicn-vector
model, inherits a natural separation into longitudinal and transverse spin projections with respect
to the direction of the external field (or spontaneous magnetization), which are distributed in the
limit as two independent Gaussian scalar spin systems with different covariance operators. The
transverse correlations are well studied within the Berlin–Kac model, which is identified with
the corresponding Gaussian model. We consider here the longitudinal correlations and study in
detail their spatial fall-off in the transition region. We find a non-trivial temperature dependence,
summable clustering away from the critical point (in particular, they obey the fluctuation relation)
and a different critical behaviour.

1. Introduction

The spherical model was invented by Berlin and Kac [1] as an approximation to the
ferromagnetic Ising model: the Ising spins,σx = ±1, are replaced by continuous spins,
Sx ∈ R, subject to a weaker condition,

∑
x∈3 S

2
x = |3|, where3 is the set of lattice sites.

The model is exactly solvable and shows a phase transition for lattice dimensiond > 3 with
a non-trivial dependence of the critical exponents ond and on the interaction range (see [2],
which reviews work up to 1971).

However, the role played by the spherical model in the present theory of phase transitions
is rather related to Stanley’s remark [3] (proved in the translation-invariant case in [4]) that
its free energy is the limit of the (appropriately scaled) isotropicn-vector free energy when
n→∞.

In general, without assuming translation invariance, then-vector free energy converges to
the free energy of a Gaussian model with self-consistently defined covariance, known as the
generalized spherical model. More precisely, the latter is defined on the finite set3 by the
Hamiltonian

H3 = 1
2

∑
x,y∈3

XxySxSy −
∑
x∈3

hxSx (1.1)

wherehx is the external field,Xxy = −Jxy for x 6= y are the coupling constants, andXxx = γx
are determined as the solutions of the local constraints:〈

S2
x

〉
H3
= 1 x ∈ 3. (1.2)
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The complete asymptotics of then-vector model, including that of the equilibrium states,
called 1/n expansion, is a powerful tool for investigating the critical properties of the model
at finiten, and, therefore, has been studied extensively ([5–12] and references therein). Along
this line of thought, the generalized spherical model cannot be identified, as done in most
papers, with the Gaussian model (1.1) and (1.2). Its equilibrium properties, for example, its
‘correlations’, should be determined starting with then-vector model and lettingn → ∞
and this provides a far richer picture than that given by the Gaussian equilibrium states. The
asymptotics of then-vector equilibrium states has been fully described in [9] (see also [10, 11],
where a more elaborate study for the paramagnetic region is made), and, using different
methods, in [12]. The limit of then-vector state is, indeed, the infinite product of copies
of the Gaussian model (1.1) and (1.2), but, when calculatingn-vector correlations of physical
interest, the higher 1/n corrections may sum up to non-trivial contributions in the limit, in
qualitative disagreement with the Gaussian result.

The purpose of this paper is to provide a physically significant instance of this phenomenon,
not fully recognized until now. A non-zero expectation of the spin in an equilibrium state of
the isotropicn-vector model introduces a preferential direction and the spin projections along
it or orthogonal to it are expected to behave differently. This is of special interest when there
is spontaneous symmetry breaking (spontaneous magnetization), in which case the Goldstone
modes play an important destabilizing role in the orthogonal plane, leading to a slow decay
of the transverse correlations, while longitudinal correlations are expected to share properties
of one-component spin systems (see, for instance, [8, 13]). It is known from standard theories
that the O(n) symmetry induces certain differences between the behaviour of transverse and
longitudinal correlations. Both hydrodynamic [14] and microscopic spin-wave approximations
[15]—considered to provide accurate results in the limit of long wavelengths and small external
magnetic field—lead for fixedT < Tc to a general asymptotic relation between the longitudinal
and the transverse correlations of the form

χ‖xy =
1

2βm2
(χ⊥xy)

2 (1.3)

wherem is the spontaneous magnetization of the system. This shows that the longitudinal
fluctuations at long wavelengths are driven by the transverse fluctuations and consequently
there should be only one significant correlation length in the system, setting the scale for the
decay both for the transverse and longitudinal correlations. A similar result is provided by the
renormalization group for the equation of state of an isotropic ferromagnet [16].

Our result in section 3 is essentially a proof of this picture in leading order asn → ∞,
i.e. in the generalized spherical model. Indeed, a consequence of the 1/n expansion of then-
vector equilibrium state is that the equilibrium distributions of the transverse and longitudinal
spin projections have differentn → ∞ limits, which turn out to be two independent, but
different, Gaussian distributions (section 2). Though the Fourier transforms of the two Gaussian
covariance operators (i.e. of the transverse and longitudinal correlations) are known explicitly,
the asymptotic relation between the two (belowTc and in zero field) mentioned above is by no
means obvious. Its derivation, presented in section 3 shows that it holds due to a singularity
developed ash↘ 0, atk = 0 in the Fourier transform ofχ‖, revealed either directly in̂χ‖(k)
(for d 6 4) or in its derivatives (ford > 5)†.

In section 4 the cross-over from this regime to the critical point asymptotic behaviour as
T ↗ Tc, is considered; it exhibits the existence of a specific correlation length forχ‖ (the
correlation length induced byχ⊥ being infinite) diverging with the same critical exponent as

† Ford > 5 though the Fourier transform is finite atk = 0, showing that there is no mode softening, the decay of the
longitudinal correlations is by no means exponential.
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the one from the high-temperature side. This new ‘correlation length’ is not necessarily defined
on the basis of the moments ofχ‖; it was recognized long ago by Halperin and Hohenberg
[17] that it makes sense to speak of a correlation length even in the case when correlations
exhibit a power-law decay, as is the case for low-dimensional O(n) symmetric ferromagnets.
We stress that ford = 3 the behaviour of̂χ‖(k) is similar to that found by Vakset al [15] for
a Heisenberg ferromagnet, based on renormalized microscopic theory of spin-waves.

2. Transverse and longitudinal correlations in the generalized spherical model

We considern-dimensional spins,Eσx ∈ Rn, x ∈ 3, living on the finite set3, subject to the
constraint:

Eσ 2
x = n ∀x ∈ 3 (2.1)

a priori distributed with the uniform measureµ on the sphere of radius
√
n, in an external

magnetic field along the direction:

Ee = 1√
n
(1, . . . ,1) ∈ Rn. (2.2)

Also, we fix some orthogonal directionEe⊥ (Ee2
⊥ = 1, Ee⊥ · Ee = 0).

The interaction Hamiltonian is

H3,n = − 1
2

∑
x,y∈3

Jxy Eσx · Eσy −
∑
x∈3

n1/2hx Ee · Eσx (2.3)

whereJ3 = (Jxy)x,y∈3 is the coupling-constant matrix, which we suppose to be ferromagnetic
(Jxy > 0, Jxx = 0) andhx > 0. We denote byf3,n the free-energy density

f3,n(β, J3, h) = −(βn|3|)−1 ln
∫

exp(−βH3,n)
∏
x∈3

dµ(Eσx) (2.4)

and by〈−〉3,n the Gibbs state corresponding toH3,n.
As shown in [9],f3,n, and all its derivatives, converge asn → ∞ to the free energy of

the Gaussian model (1.1) and (1.2), i.e. to

f3(β, h) = (β|3|)−1 ln det

(
β

2π
X3

)
− (2|3|)−1

(
h, (X3)

−1h
)− (2|3|)−1 tr(X3) (2.5)

and, respectively, to its corresponding derivatives, e.g.

−|3| lim
n→∞ ∂hxf3,n = −|3|∂hxf3(β, h) = [(X3)

−1h]x =: (m3)x (2.6)

−|3| lim
n→∞ ∂

2
hxhy

f3,n = −|3|∂2
hxhy

f3(β, h) = (X3 + 2βM3P3M3)
−1
xy =: (χ‖3)xy. (2.7)

Here, we have denoted byX3 the matrix with diagonal elementsγx , with off-diagonal elements
−Jxy , and satisfying the local conditions (1.2), i.e.

β−1(X3)
−1
xx = 1− [(X3)

−1h]2
x x ∈ 3. (2.8)

Also, we introduced the matricesM3 andP3 defined by

M3 = ((m3)xδxy)x,y∈3 (P3)
−1 = ([(X3)−1

xy ]2)x,y∈3. (2.9)

Note that, due to theh dependence ofγx , the local susceptibilitiesχ‖xy do not coincide
with the local susceptibilities of the Gaussian model (1.1), i.e. with

β〈SxSy〉TH3 = (X3)−1
xy =: (χ⊥3)xy (2.10)
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which is usually taken as the susceptibility of the spherical model. From the results summarized
above one sees that, for the generalized spherical model, this is not the only susceptibility
worth studying,χ‖xy being expected to play at least an equal role in the transition. The physical
meaning ofχ‖xy andχ⊥xy is further revealed by considering the equilibrium states.

The equilibrium states〈−〉3,n converge asn → ∞ to an infinite product of copies of
the Gaussian equilibrium state of the model (1.1) and (1.2). In fact, much more is proved in
[9]: all n-vector equilibrium expectations of finite products of spin components have complete
asymptotic series in powers of1/n. We write for further reference the first terms of the
expansion for the one- and two-spin correlations:〈
σµx
〉
3,n
= 〈Sx〉H3 − (2nβ)−1∂hx (log detH3) + O(n−2) (2.11)〈

σµx σ
ν
y

〉T
3,n
= δµν〈SxSy〉H3 − (nβ2)−1[δµν∂

2
hxhy

(log detH3) + (H3∂hx γ3, ∂hy γ3)] + O(n−2).

(2.12)

Here,γ3 = (γx(β, h))x∈3 denotes the diagonal vector ofX3 and

(H3)xy = 1
2((X3)

−1
xy )

2 + β((X3)
−1h)x(X3)

−1
xy ((X3)

−1h)y. (2.13)

In this paper, we consider the equilibrium distribution of the projections ofEσx along the
two directionsEe, Ee⊥ introduced above:

ξx = Ee · Eσx − 〈Ee · Eσx〉3,n ηx = Ee⊥ · Eσx (x ∈ 3). (2.14)

We view ξ = (ξx)x∈3, η = (ηx)x∈3 as vectors inR3 and denote by(· , ·) the usual scalar
product inR3. Equation (2.12) allows us to calculate the correlations ofξ, η in the limit

lim
n→∞〈ξxξy〉3,n =

1

β
(χ
‖
3)xy lim

n→∞〈ηxηy〉3,n =
1

β

(
χ⊥3
)
xy

lim
n→∞〈ξxηy〉3,n = 0

whereby it is seen that the corrections of order 1/n sum up in a non-trivial contribution to
limn→∞〈ξxξy〉H3,n .

The following proposition can be easily derived and extends the results of [9], to
characteristic functions, i.e. to all correlations.

Proposition 1. Letλ,µ ∈ R3. Then,

lim
n→∞〈exp i[(λ, ξ) + (µ, η)]〉3,n = exp− 1

2β

[(
λ, χ

‖
3λ
)

+
(
µ, χ⊥3µ

)]
(2.15)

implying that the random vectorsξ, η converge in the〈−〉H3,n -distribution to independent

Gaussian vectors with covariance matricesχ‖3, χ
⊥
3 , respectively.

This result shows that the spherical model should be viewed rather as a pair of independent
Gaussian models, the Hamiltonian for theη variables being (1.1), and for theξ variables being
H‖3 = 1

2

(
ξ, (χ

‖
3)
−1ξ

)
.

A few remarks are in order.

(a) Both theξ andη variables are coupled ferromagnetically. This is trivial for theη’s, as
the off-diagonal elements ofX3 are just the original−Jxy . For theξ ’s this follows from
the fact thatP3 has non-positive off-diagonal elements (it is anM-matrix, cf [9]).

(b) The fluctuation relation is fulfilled in the generalized spherical model with the fluctuation
variablesξ .
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One has to check that(−1/|3|)∑x,y〈ξxξy〉H‖3 equals the second derivative of the free
energy with respect to a uniform magnetic field added to the originalh. This is obvious, as the
ξ ’s are correlated with the Hessian of−|3|f3(β, h). This remark is relevant in connection
with the comments (cf, e.g., [18]) concerning the violation of the fluctuation relation in the
mean spherical model.

We shall restrict ourselves henceforth to the (physically most interesting) case of spins
living on the latticeZd with translation-invariant interactions and external field (hx = h). We
take3 = 3N = {0, 1, . . . , N − 1}d and impose periodic boundary conditions. Thereby,
we consider for simplicity nearest-neighbour interactions:Jxy = (2d)−1J , if x, y are nearest
neighbours on the torus3N andJxy = 0 otherwise, and takeJ = 1. In view of the uniqueness
of the solution of the system (2.8), the spherical fieldsγ 3x (β, h) arex independent:

γ 3x (β, h) = 1 + z3(β, h) (2.16)

and X3 is diagonalized by Fourier transformation: denotingBN = (2π/N)3N , the
eigenvalues ofX3 are{z3(β, h) + ω(k)}k∈BN , where

ω(k) = 1− d−1
d∑
α=1

coskα = 2

d

d∑
α=1

sin2 k
α

2
. (2.17)

The system (2.8) reduces to one equation:

β−1N−d
∑
k∈BN

1

z + ω(k)
= 1−

(
h

z

)2

(2.18)

which has a unique positive solutionz = z3(β, h). Hence one obtains Fourier representations
of all the quantities of interest. We mention, for further reference, that the matrixP3 defined
in equation (2.9) is diagonal in the same Fourier basis and its eigenvalues,{ϕ3(k)}k∈BN , are
given by the convolution

1

ϕ3(k)
= 1

Nd

∑
q∈BN

1

[z3 + ω(q)][z3 + ω(k − q)] . (2.19)

We consider now the thermodynamic limit,N →∞. In the ‘regularity region’:

{h 6= 0} ∪
{
β < βc(d) := (2π)−d

∫
Bd

1

ω(k)
dk

}
(2.20)

whereBd = [−π, π)d , the unique solutionz3(β, h) of equation (2.18) is bounded away from
zero uniformly inN and converges asN →∞ to the unique solutionz = z(β, h) > 0 of the
limit equation:

β−1(2π)−d
∫
Bd

1

z + ω(k)
dk = 1− (h/z)2. (2.21)

Hence, the thermodynamic limit is straightforward, andχ‖3, χ
⊥
3 converge, respectively,

uniformly on the compacts of the region (2.20), to the real-analytic functions:

χ⊥xy = χ⊥xy(β, h) =
1

(2π)d

∫
Bd

exp(ik(x − y))
z(β, h) + ω(k)

dk (2.22)

χ‖xy = χ‖xy(β, h) =
1

(2π)d

∫
Bd

exp(ik(x − y))
z(β, h) + ω(k) + 2βm2(β, h)ϕz(β,h)(k)

dk (2.23)
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where

1

ϕz(k)
= 1

(2π)d

∫
Bd

1

[z + ω(q)][z + ω(k − q)] dq. (2.24)

For d = 1, 2, βc(d) = ∞, and the regularity region (2.20) covers the whole parameter
spaceβ > 0, h ∈ R. For d > 3, we haveβc(d) < ∞, and there will be a phase transition
region{β > βc(d), h = 0}, which we shall approach by taking the limith ↘ 0 in the above
expressions. Of course, as seen from equation (2.21), forβ > βc(d), one has spontaneous
magnetization, i.e.

m(β, h) = h/z(β, h)↘ m(β, 0) =
√

1− βc(d)
β

. (2.25)

In the regularity region (2.20),χ⊥xy andχ‖xy have exponential decay, i.e. finite correlation
length:

lim
|x−y|→∞

∣∣ln χ⊥,‖xy (β, h)
∣∣

|x − y| = 1

λ⊥,‖(β, h)
> 0. (2.26)

This follows at once from the fact thatω(k) andϕz(k) (for z > 0) are real-analytic functions
on the torusBd . While an explicit formula forλ⊥,‖(β, h) is hard to find ind > 1, one can
hopefully control their behaviour when(β, h) approaches the transition region. As it happens
that λ⊥,‖ → ∞ when approaching in a certain way a given point(β, 0), β > βc(d), two
problems of physical interest arise:

(a) the asymptotics ofχ⊥,‖xy (β, 0) i.e. the decay of the correlations in the point(β, 0);
(b) the possible scaling regimes (continuum limits) around(β, 0).

In the following sections, we consider these problems forχ
‖
xy , as the behaviour ofχ⊥xy is well

studied [2].

3. Decay and scaling far from the critical point

In this section we consider the asymptotic behaviour asx → ∞, h ↘ 0 of χ‖0x(β, h) for
β > βc(d), d > 3.

The natural framework for the scaling problem (b) is distribution theory. LetD◦d =
D(Rd\{0}) andD◦′d its dual. A function on the latticef : Zd → C defines a distribution∑

x∈Zd f (x)δx ∈ D◦′d , which will also be denoted byf . We adopt the following conventions.

Definition 1. A family of functions on the lattice,f (z, ·), is said to scale in the limitz→ 0, if
there exists a functionλ(z) with limz→0 λ(z) = ∞ and a function F:Rd\{0} → R, defining a
distributionF ∈ D◦′d , such that the distributionsλ(z)−d

∑
x∈Zd f (z, x)δx/λ(z) converge inD◦′d

to F , i.e. if, for all φ ∈ D◦d ,

lim
z→0

λ(z)−d
∑
x∈Zd

f (z, x)φ(x/λ(z)) =
∫
Rd
F (x) φ(x)dx. (3.1)

The shorthand notation for equation (3.2) is

D◦′d − lim
z→0

f (z, xλ(z)) = F(x). (3.2)

The same frame allows a great simplification in finding the solution to problem (a), also,
however, with convergence in a weaker sense. Namely, we adopt the following definition.
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Definition 2. For a functionf : Zd → C, we shall say thatD◦′d -limx→∞ f (x) = L, if

lim
λ→∞

λ−d
∑
x∈Zd

f (x)φ(x/λ) = L
∫
φ(x) dx = L(2π)d/2φ̂(0) ∀φ ∈ D◦d . (3.3)

The existence of the usual limx→∞ implies, of course, the existence of theD◦′d -limx→∞
with the same value. The converse is not true without further hypotheses, e.g.f (x) = (−1)x1

hasD◦′d -limx→∞ equal to 0, but no limit. In fact, the above definition implies an averaging
process over a ‘macroscopic’ scale.

The results of this section are contained in the following two propositions, answering the
problems (a) and (b), respectively, forβ > βc(d). For the sake of comparison we also give
the analogous results forχ⊥0x.

Proposition 2. In the sense of definition 2:

D◦ ′d − lim
x→∞ |x|

d−2χ⊥0x(β, 0) = Kd (3.4)

D◦ ′d − lim
x→∞ |x|

2d−4χ
‖
0x(β, 0) =

1

2βm(β, 0)2
K2
d (3.5)

whereKd = 0(d/2− 1)/4πd/2.

In considering the scaling limith ↘ 0 at fixedβ > βc(d), we shall take advantage of
the one-to-one correspondence betweenh andz in the regularity region and of equation (2.25)
to take as the scaling parameterz itself. Thereby, we omit mentioning theβ dependence and
denoteχ⊥,‖(z, x) := χ⊥,‖0x (β, h).

Proposition 3. In the sense of definition 1:

D◦ ′d − lim
z↘0

z(2−d)/2χ⊥(z, x/
√
z) = G(x) (3.6)

D◦ ′d − lim
z↘0

z2−dχ‖(z, x/
√
z) = 1

2βm(β, 0)2
G(x)2 (3.7)

whereG(x) is the Fourier transform of(2π)−d/2
(
1 +k2/2d

)−1
(i.e.G(x − y) is the kernel of

(1− (1/2d)1)−1 in L2(Rd)).

The proofs of equations (3.5) and (3.7) have, technically, very much in common, so we
start by making a few preparatory remarks, useful in both cases.

Both equations (3.5) and (3.7), when compared with (3.4) and (3.6), respectively, say that
χ‖ has the same behaviour as(χ⊥)2/2βm(β, 0)2. Upon looking at equations (2.22)–(2.24)
and remarking that 1/ϕz(k) is the Fourier transform of(χ⊥)2, one has in fact to show that
z+ω(k) in the denominator of equation (2.23) is irrelevant in the considered asymptotics. We
therefore make the following expansion:

1

z + ω(k/λ) + 2βm2ϕz(k/λ)
= 1

2βm2ϕz(k/λ)

s−1∑
j=0

[
− z + ω(k/λ)

2βm2ϕz(k/λ)

]j
+

[
− z + ω(k/λ)

2βm2ϕz(k/λ)

]s 1

z + ω(k/λ) + 2βm2ϕz(k/λ)
(3.8)

and we have to show that only thej = 0 term contributes to the limit.
The next remark is related to theD◦ ′d -convergence, i.e. with the fact thatφ in the left-hand

side of equations (3.1) and (3.3) has compact support far from 0, implying that all singularities
developed (typically, in lower orders in 1/λ) at the origin are wiped out. As we can view the
distributions in both sides as being restrictions of distributions inD′d , we can go to a Fourier
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representation. Technically, the restriction toφ ∈ D◦d means that all moments of̂φ vanish,
therefore one can subtract at will polynomials (entire functions) from the Fourier transform
of the considered distribution without altering its restriction toD◦d . This suggests that it is
appropriate to make a Taylor expansion of the Fourier transform. We write down below, for
further use, the expansion of 1/ϕz(k/λ). To this end, we introduce the following notation:

ω(i)(q; k) :=
(

d

dθ

)i
[ω(q − θk)]|θ=0 =


(−1)(i+1)/2

d

d∑
α=1

(kα)
i sin(qα) (i odd)

(−1)(i+2)/2

d

d∑
α=1

(kα)
i cos(qα) (i even).

(3.9)

ω(i)(q; k) are homogeneous polynomials ofk, in terms of which one has, for allz > 0, q 6= 0:

1

z + ω(q − k/λ) =
1

z + ω(q)
+
m−1∑
n=1

∑
p>1,i1,...,ip>1
i1+···+ip=n

∏p

j=1

(−ω(ij )(q; k/λ)/ij !)
(z + ω(q))p+1

+m
∫ 1

0
dθ (1− θ)m−1

∑
p>1,i1,...,ip>1
i1+···+ip=m

∏p

j=1

(−ω(ij )(q − θk/λ; k/λ)/ij !)
(z + ω(q − θk/λ))p+1

.

(3.10)

Insertion of equation (3.10) into the definition (2.24) provides a Taylor expansion of 1/ϕz(k/λ),
whenever the integrals overq in all terms are convergent. This always happens ifz > 0. For
z = 0, the integrability atq = 0 is established using the following elementary bounds valid
for q ∈ Bd :

ω(q) > c|q|2 ∣∣ω(i)(q; k)∣∣ 6 { |k|i |q| (i odd)
|k|i (i even).

(3.11)

Finally, one obtains

1/ϕz(k/λ) = Pm(z, k/λ) +Rm(z, k/λ) (3.12)

with Pm(z, ·) a polynomial of degreem − 1, which can be discarded whenever we integrate
with a function inD̂◦d ; thereby,m is arbitrary, ifz > 0, but is dimension dependent, ifz = 0.

With this preparation, we can proceed to the proofs.

Proof of equation (3.5).Applying equation (3.5) toφ ∈ D◦d as in definition 2 and remarking
that |x|2d−4φ(x) ∈ D◦d and its Fourier transform is(−1)d−2φ̂, we go to a Fourier transform
on the left-hand side, and obtain

λ−d
∑
x∈Zd
|x|2d−4χ

‖
0x(β, 0) φ(x/λ) =

λd−4

(2π)d/2

∫
Rd

(−1)d−2φ̂(k)

ω(k/λ) + 2βm(β, 0)2ϕ0(k/λ)
dk. (3.13)

We have to show that this converges to

1

2βm(β, 0)2
K2
d (2π)

d/2
∫
Rd
ψd(k)(−1)d−2φ̂(k) dk (3.14)

whereψd is the fundamental solution of(−1)d−2ψd = δ [19]:

ψd(k) =
{
Ad |k|d−4 (d odd)
Bd |k|d−4 ln |k| (d even).
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With this aim, we use the expansion (3.8) withz = 0, and withs chosen so large that the
last term can be shown, by simply applying the dominated convergence theorem, to give no
contribution to the limit (i.e. to dominate theλd−4 in front of equation (3.13)). This is possible,
becauseω(k) is bounded below and above on compacts by|k|2 times positive constants, and
thence 1/ϕ0(k) is bounded by 1/|k| in d = 3, by | ln |k|| in d = 4, and by a constant ind > 5.
Therefore, one hass = 1 for d = 3, 4, ands = [ 1

2d
]− 1 for d > 5.

The next step consists in performing the Taylor expansion. We start by considering
1/ϕ0. As already remarked, a term(i1, . . . , ip) of the sum in equation (3.10) enters the Taylor
polynomial if it provides a convergent integral. A power counting using equation (3.11) shows
that this happens whenevernodd > 2p − d + 4, wherenodd is the number of odd indices
among(i1, . . . , ip). As neven+ nodd = p and 2neven+ nodd 6 m, it follows that this happens
if m < d − 4. Moreover, ifd is odd, the (d − 4)-term vanishes by symmetry. Therefore,
by choosingm = d − 4, for d even, andm = d − 3, for d odd, one can replace 1/ϕ0(k/λ)

byRm(0, k/λ). Moreover, by the same power counting, all terms(i1, . . . , ip) of Rm(0, k/λ),
but those with 2neven + nodd = m, lead, by dominated convergence, to polynomials and can
therefore be discarded, too. The contribution of 1/ϕ0 to the limit of equation (3.13) is thus
given by

lim
λ→∞

1

2βm(β, 0)2
λd−4(2π)−d/2

∫
Rd
R̃m(k/λ)(−1)d−2φ̂(k) dk (3.15)

whereλd−4R̃m(k/λ) is (after a translation in the integral overBd ) a sum of terms of the form

Ip(λ, k) = λd−4
∫ 1

0
dθ (1− θ)m−1

∫
Bd

ω(1)(q; k/λ)2p−mω(2)(q; k/λ)m−p
ω(q)p+1ω(q + θk/λ)

dq

=
∫ 1

0
dθ (1− θ)m−1

∫
Bd

ω(1)(q; k)2p−mω(2)(q; k)m−p
λm−d+4ω(q)p+1ω(q + θk/λ)

dq (3.16)

with m/26 p 6 m. The following limits are immediate:

lim
λ→∞

λ2ω(1)
(
q

λ
; k
λ

)
= −1

d
qk = ω̃(1)(q, k)

lim
λ→∞

λ2ω(2)
(
q

λ
; k
λ

)
= 1

d
k2 = ω̃(2)(q, k)

(3.17)

whereω̃(k) := (1/2d)k2 andω̃(i) are defined in terms of̃ω by analogy with equation (3.9).
For d odd, after going to the variable(λ/|k|)q, denoting κ = k/|k|, and using

equation (3.17) in conjunction with equation (3.11), one can apply dominated convergence
to show thatIp(λ, k) converges for everyk 6= 0 to ψd(k) = Ad |k|d−4 times a constant
depending onp andd. Namely,

lim
λ→∞

Ip(λ, k) = |k|d−42p+2d2
∫ 1

0
dθ (1− θ)d−4

∫
Rd

(qκ)2p−d+3

q2(p+1)(q + θκ)2
dq. (3.18)

The limit in (3.15) follows from dominated convergence, with the bound at∞ provided by
(−1)d−2φ̂ ∈ S(Rd).

The case of evend is slightly trickier. One can verify (using as above the dominated
convergence) that, by subtracting

Jp(λ, k) =
∫ 1

0
dθ (1− θ)d−5

∫
Bd∩{|q|>|k|/λ}

ω(1)(q, k)2p−d+4ω(2)(q, k)d−4−p

ω(q)p+2
dq
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one has limλ→∞[Ip(λ, k) − Jp(λ, k)] = C|k|d−4, which is a polynomial, hence it does not
contribute to the limit of (3.15). In turn,Jp(λ, k) behaves like

2p+2d2
∫ 1

0
dθ(1− θ)d−5

∫
{1>|q|>|k|/λ}

(qk)2p−d+4k2(d−4−p)

q2(p+2)
dq = Cp|k|d−4 ln

|k|
λ

in the sense that the difference converges to a polynomial ofk, which gives no contribution.
Note that, in order to obtain a term proportional toψd(k) = Bd |k|d−4 ln |k|, we have to extract
here, besides the Taylor polynomial of degreed−5, also the diverging termCp|k|d−4 ln(1/λ),
which, however, gives zero identically when integrated with(−1)d−2φ̂. For alld the constants
Cp in front ofψd(k) sum up to provide the valueK2

d appearing in equation (3.5), but we shall
not follow this calculation. �

This finishes the proof of equation (3.5) ford = 3, 4, 5. Ford > 5, we still have to show
that the termsj = 1, . . . , s − 1 in equation (3.11) do not contribute to the limit. We have
shown above that

1/ϕ0(k/λ) = P̃m(k/λ) + R̃m(k/λ) (3.19)

whereP̃m is a polynomial, eventually including the termsCp|k|d−4 ln(1/λ) subtracted in the
case of evend, and limλ→∞ λd−4R̃m(k/λ) = (2π)dK2

dψd(k). Hence,

λd−4

ϕ0(k/λ)

[
ω(k/λ)

ϕ0(k/λ)

]j
= λd−4ω(k/λ)j P̃m(k/λ)

j+1 + λd−4R̃m(k/λ)ω(k/λ)
jS(λ, k) (3.20)

where S contains terms of the formR̃m(k/λ)r P̃m(k/λ)j−r (r > 0). The first term in
equation (3.20) vanishes when integrated with(−1)d−2φ̂. For the second term, one uses
ω(k/λ) 6 |k|2/λ2 and|Pm(λ, k)| 6 C(1+|k|)m ln λ, to show that it is uniformly polynomially
bounded and goes to 0 asλ→∞, and hence the assertion follows.

Proof of equation (3.7). Going to the Fourier transform in the left-hand side and applying
definition 1 withλ(z) = 1/

√
z, i.e. takingz = 1/λ2, we have to calculate, forφ ∈ D◦d :

lim
λ→∞

λd−4

(2π)d/2

∫
Rd

φ̂(k)

(1/λ)2 + ω(k/λ) + 2βm(β, 0)2ϕ1/λ2(k/λ)
dk. (3.21)

We proceed as before with the expansion (3.8), followed by the Taylor expansion (3.12). We
note thatm is arbitrary in equation (3.12), as there are no convergence problems at the origin.

We start by considering the contribution of the first term of equation (3.8). One has to
calculate

lim
λ→∞

λd−4

(2π)d/2

∫
Rd
Rm(1/λ

2, k/λ)φ̂(k) dk = lim
λ→∞

m
λd−4

(2π)d/2

∫
Rd

dk φ̂(k)
∫ 1

0
dθ (1− θ)m−1

×
∑

p>1,i1,...,ip>1
i1+···+ip=m

∫
Bd

∏p

j=1(−ω(ij )(q − θk/λ; k/λ)/ij !)
(λ−2 + ω(q))(λ−2 + ω(q − θk/λ))p+1

dq. (3.22)

If m > d − 4 (to ensure a negative power ofλ in front), all terms which lead to convergent
q-integrals, or to at most logarithmic divergences, converge to zero. We use the same power
counting as in the previous proof to show that this disposes of all terms in the sum with
nodd > 2p − d + 4. LetR̃m(1/λ2, k/λ) denote the sum of the terms withnodd < 2p − d + 4.
After operating the change of variableq → λq − θk and rearranging theλ-factors in such a
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way that the pointwise limit of the integrand becomes obvious by use of equation (3.17), we
have

lim
λ→∞

λd−4R̃m(1/λ
2, k/λ) = lim

λ→∞
m

∫ 1

0
dθ (1− θ)m−1

×
∑∫

λBd

∏p

j=1

(−λ2ω(ij )(q/λ; k/λ)/ij !
)

(1 +λ2ω((q + θk)/λ))(1 +λ2ω(q/λ))p+1
dq

where the sum runs overp > 1, i1, . . . , ip > 1, i1 + · · ·+ ip = m, nodd< 2p−d + 4. Thereby,
we remark that, in view of equation (3.11), only the terms with allij ∈ {1, 2} have a non-zero
pointwise limit. By choosingm sufficiently large to ensure the integrability inq at∞, one
obtains, taking into account that forij > 2, ω̃(ij ) = 0:

lim
λ→∞

λd−4

(2π)d/2

∫
Rd
Rm(1/λ

2, k/λ)φ̂(k) dk = 1

(2π)d/2

∫
Rd

dk φ̂(k)m
∫ 1

0
dθ (1− θ)m−1

×
∑

p>1,i1,...,ip>1
i1+···+ip=m

∫
Rd

∏p

j=1

(−ω̃(ij )(q; k)/ij !)
(1 + ω̃(q + θk))(1 + ω̃(q))p+1

dq. (3.23)

In fact, an analysis similar to the one given in the proof of equation (3.5) shows that the other
terms of equation (3.8) give no contribution, so that equation (3.23) provides the final result
for the limit (3.21).

In order to see that this equals the right-hand side of equation (3.7), we have to express the
latter as a Fourier transform. AsG(x)2 is not locally integrable at 0, a regularization is necessary
in order to extend it to a distribution inD′d , allowing us to use the Fourier representation. For
instance, forφ ∈ D◦d :∫
Rd
G(x)2φ(x) dx = lim

ε↘0

∫
Rd

∫
Rd
G(x)G(y)

exp
[−(x + y)2/2ε

]
(2πε)d/2

φ(x) dx dy

= lim
ε↘0

∫
Rd

∫
Rd

exp
(−εq2

)
(1 + ω̃(q))(1 + ω̃(q − k)) φ̂(k) dk dq. (3.24)

As φ ∈ D◦d , we can write the Taylor formula to orderm aroundk = 0 and retain only the
remainder. By choosingm as before, the integrability at∞ is achieved, and the application of
the dominated convergence theorem yields the right-hand side of equation (3.23). �

Remarks

(a) As already pointed out, proposition 2 states that, in the ordered phase(β > βc, h = 0),
χ
‖
xy ∼ |x|−2(d−2) (|x − y| → ∞). Hence, the correlations of the longitudinal fluctuations

decay faster than those of the transverse fluctuations, but still obeying a power law. For
d > 5,

∑
x χ
‖
0x <∞, i.e. the longitudinal fluctuations have summable clustering, leading

to normal magnetization fluctuations. Ind = 3 and 4,
∑
|x|<L χ

‖
0x diverges linearly and,

respectively, logarithmically asL→∞, leading to abnormal magnetization fluctuations.
(b) The scaling relations in proposition 3 control the cross-over from the exponential decay

(at h > 0) to the power-law decay (ath = 0), showing in particular that the correlation
lengthsλ‖,⊥ ∼ C(β)‖,⊥/√h for h↘ 0, β > βc, whereC(β)⊥ = 2C(β)‖.

(c) The Fourier transforms ofχ‖,⊥0x equal, respectively, by equations (2.22) and (2.23), the
inverses of the dispersion laws of the corresponding Gaussian models. The divergence of
λ⊥ ash ↘ 0 and the power law|x|2−d for χ⊥0x(β, 0) are taken care of by the ‘softening’
of the transverse modes ash ↘ 0, β̇ > βc, z(β, h) ∼ h/m(β, 0). This is no longer true
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for the longitudinal fluctuations, where the divergence ofλ‖ ash↘ 0 and the power law
|x|2(2−d) forχ‖0x(β, 0) are explained by the non-analyticity which appears atk = 0 inϕz(k)
asz↘ 0. Maybe unexpectedly, ford > 5, in spite of the fact that the dispersion law still
has a ‘mass’ 2βm(β, 0)2ϕ0(0) > 0 atz = 0, the decay ofχ‖0x(β, 0) is not exponential.
This behaviour agrees with the predicted one (see [20]), and constitutes a proof of the
latter in the large-n limit

(d) Our results complement the heuristic picture for then-vector model based on the ‘spin-
wave picture’ or the Goldstone one (see for instance in this respect the textbooks by
Negele and Orland [21] and Zinn-Justin [22]). They show that indeed the two-point
truncated correlation functions have an exponential fall-off with a decay rate proportional
to
√
h on the critical line, far away from the critical point, while at the critical point

the truncated correlation functions have a power-law decay, reminding one of the one
obtained in asymptotically free massless theories, dictated by the behaviour of(−1)−1.
Seemingly, the Goldstone picture is contradicted by only one rigorous result obtained
for the hierarchical model by Schor and Carroll [23], where the truncated correlation
functions parallel to the spontaneous magnetization have a rather strange behaviour. The
explanation is that their behaviour is controlled by a non-canonical Gaussian fixed point,
which is a property specific to the hierarchical model and is by no means expected to hold
in the completen-vector models.

4. Scaling at the critical temperature

Forh = 0, β 6 βc, one hasm(β, 0) = 0,χ‖0x(β, 0) = χ⊥0x(β, 0), hence thelarge-x behaviour
at the critical point(βc, 0) and the scaling from the paramagnetic side is taken care of by
equations (3.4) and (3.6). We shall therefore consider only the scaling ofχ

‖
0x(β, 0) from the

ferromagnetic sideβ ↘ βc. It turns out that the scaling functions are qualitatively different
for d = 3, 4 andd > 5.

We take as a parametert = β − βc and denoteχ‖0x(β, 0) = χ‖(t, x).
Proposition 4. In the sense of definition 1:

D◦ ′d − lim
t↘0

t−1χ‖(t, x/t) = 1

(2π)3

∫
R3

exp ikx
1
6k

2 + 4
9|k|

dk if d = 3 (4.1)

D◦ ′d − lim
t↘0

| ln t |
t
χ‖
(
t, x

√
| ln t |
t

)
= (π2/8

)d/2−1
G
(
x
√
π2/8

)
if d = 4 (4.2)

D◦ ′d − lim
t↘0

t1−d/2χ‖(t, x/
√
t) = (2ϕ0(0))

d/2−1G(x
√

2ϕ0(0)) if d > 5 (4.3)

whereG is the same function as in proposition 3.

Proof. After applying definition 1 (with parametert andλ(t) as indicated in equations (4.1)–
(4.3)) to a certainφ ∈ D◦d and going in the left-hand side to Fourier transforms, the result
follows by dominated convergence in

lim
t↘0

λ−2

(2π)d/2

∫
Rd

φ̂(k)

ω(k/λ) + 2tϕ0(k/λ)
dk. (4.4)

The integrability at∞ being ensured bŷφ, one has to care only about the smallk behaviour.
This follows immediately ford > 5, and for the other cases is accomplished by calculating
the following limits: limk→0 |k|/ϕ0(k) = 9

2, for d = 3 and limk→0 | ln |k||ϕ0(k) = π2/8, for
d = 4. �
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Remarks

(a) The meaning of the scaling relations in proposition 4 is that it makes sense to speak about
a diverging correlation length of thelongitudinal fluctuations, also when approaching
the critical temperature from the low-temperature side, in spite of the power-law decay
given by equation (3.5). This can be taken asλ(t) of proposition 4, i.e. 1/t in d = 3,√| ln t |/t in d = 4 and 1/

√
t in d > 5. With this interpretation, the comparison with

the high-temperature scaling law, obtained from equation (3.6) and the relation between
z andt < 0 given by equation (2.21) ath = 0, i.e.

lim
t↗0

−t
z2
= 1

(2π)3

∫
R3

1

ω̃(k)(1 + ω̃(k))
dk (d = 3)

lim
t↗0

−t
z| ln z| =

4

π2
(d = 4)

lim
t↗0

−t
z
= 1

ϕ0(0)
(d > 5)

shows thatthe symmetry of the correlation length critical indices on the two sides of the
critical temperature is restored.

(b) For alld > 3, the homogeneous function|x|2−d appearing in the behaviour of the scaling
functions aroundx = 0 has the same order as the one appearing in the large-x decay of
the correlations at the critical point, equation (3.4). The fall-off at infinity of the scaling
function is exponential ford > 4, but power law ford = 3. In the latter case,

1

(2π)3

∫
R3

exp ikx
1
6k

2 + 4
9|k|

dk = 3

π2

si(8|x|/3) cos(8|x|/3)− sin(8|x|/3)ci(8|x|/3)
|x|

has the fall-off|x|−2 characteristic of the decay of the longitudinal correlations in the
ferromagnetic phase, equation (3.5), thusthe scaling function describes the cross-over
between the two regimes, β = βc andβ > βc.

(c) The behaviour of the longitudinal correlation functions in three dimensions have also been
studied recently by Garanin [24] in the context of the anisotropic spherical model. It has
been found that for small wavevectors the longitudinal correlation functions show a non-
trivial behaviour in the ordered phase caused by spin-wave fluctuations, reinforcing the
spin-wave theory of [15], a behaviour we also found in our study of the isotropic spherical
model.
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