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Abstract. We point out that the generalized spherical model, as a limit of the isotrepéctor

model, inherits a natural separation into longitudinal and transverse spin projections with respect
to the direction of the external field (or spontaneous magnetization), which are distributed in the
limit as two independent Gaussian scalar spin systems with different covariance operators. The
transverse correlations are well studied within the Berlin—Kac model, which is identified with
the corresponding Gaussian model. We consider here the longitudinal correlations and study in
detail their spatial fall-off in the transition region. We find a non-trivial temperature dependence,
summable clustering away from the critical point (in particular, they obey the fluctuation relation)
and a different critical behaviour.

1. Introduction

The spherical model was invented by Berlin and Kac [1] as an approximation to the
ferromagnetic Ising model: the Ising sping, = +1, are replaced by continuous spins,
S. € R, subject to a weaker conditio}, ., S? = |A[, whereA is the set of lattice sites.
The model is exactly solvable and shows a phase transition for lattice dimeh&oB with

a non-trivial dependence of the critical exponentsiand on the interaction range (see [2],
which reviews work up to 1971).

However, the role played by the spherical model in the present theory of phase transitions
is rather related to Stanley’s remark [3] (proved in the translation-invariant case in [4]) that
its free energy is the limit of the (appropriately scaled) isotrepiector free energy when
n — o0.

In general, without assuming translation invariance ptivector free energy converges to
the free energy of a Gaussian model with self-consistently defined covariance, known as the
generalized spherical model. More precisely, the latter is defined on the finite lzgthe
Hamiltonian

Ha=3 D XuySeSy— Y S, (1.1)
x,yeA xeA
wheren, is the external fieldX ., = —J,, forx # y are the coupling constants, akd, = y;

are determined as the solutions of the local constraints:
($2),, =1 xeA (1.2)
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The complete asymptotics of thevector model, including that of the equilibrium states,
called ¥n expansion, is a powerful tool for investigating the critical properties of the model
at finiten, and, therefore, has been studied extensively ([5-12] and references therein). Along
this line of thought, the generalized spherical model cannot be identified, as done in most
papers, with the Gaussian model (1.1) and (1.2). Its equilibrium properties, for example, its
‘correlations’, should be determined starting with theector model and letting — oo
and this provides a far richer picture than that given by the Gaussian equilibrium states. The
asymptotics of the-vector equilibrium states has been fully described in [9] (see also [10, 11],
where a more elaborate study for the paramagnetic region is made), and, using different
methods, in [12]. The limit of thei-vector state is, indeed, the infinite product of copies
of the Gaussian model (1.1) and (1.2), but, when calculatimgctor correlations of physical
interest, the higher /lu corrections may sum up to non-trivial contributions in the limit, in
qualitative disagreement with the Gaussian result.

The purpose of this paper is to provide a physically significant instance of this phenomenon,
not fully recognized until now. A non-zero expectation of the spin in an equilibrium state of
the isotropici-vector model introduces a preferential direction and the spin projections along
it or orthogonal to it are expected to behave differently. This is of special interest when there
is spontaneous symmetry breaking (spontaneous magnetization), in which case the Goldstone
modes play an important destabilizing role in the orthogonal plane, leading to a slow decay
of the transverse correlations, while longitudinal correlations are expected to share properties
of one-component spin systems (see, for instance, [8, 13]). Itis known from standard theories
that the @n) symmetry induces certain differences between the behaviour of transverse and
longitudinal correlations. Both hydrodynamic [14] and microscopic spin-wave approximations
[15]—considered to provide accurate results in the limit of long wavelengths and small external
magnetic field—lead for fixe@ < T, to a general asymptotic relation between the longitudinal
and the transverse correlations of the form

X = Tfnzo@)z (1.3)
wherem is the spontaneous magnetization of the system. This shows that the longitudinal
fluctuations at long wavelengths are driven by the transverse fluctuations and consequently
there should be only one significant correlation length in the system, setting the scale for the
decay both for the transverse and longitudinal correlations. A similar result is provided by the
renormalization group for the equation of state of an isotropic ferromagnet [16].

Our result in section 3 is essentially a proof of this picture in leading order-as oo,
i.e. in the generalized spherical model. Indeed, a consequence ofittexfansion of the-
vector equilibrium state is that the equilibrium distributions of the transverse and longitudinal
spin projections have differemt — oo limits, which turn out to be two independent, but
different, Gaussian distributions (section 2). Thoughthe Fourier transforms of the two Gaussian
covariance operators (i.e. of the transverse and longitudinal correlations) are known explicitly,
the asymptotic relation between the two (belfiwand in zero field) mentioned above is by no
means obvious. Its derivation, presented in section 3 shows that it holds due to a singularity
developed as \ 0, atk = 0 in the Fourier transform of !, revealed either directly i/ (k)
(for d < 4) or in its derivatives (foel > 5)t.

In section 4 the cross-over from this regime to the critical point asymptotic behaviour as
T / T., is considered; it exhibits the existence of a specific correlation lengtj 'f¢the
correlation length induced by being infinite) diverging with the same critical exponent as

T Ford > 5though the Fourier transform is finitefat= 0, showing that there is no mode softening, the decay of the
longitudinal correlations is by no means exponential.
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the one from the high-temperature side. This new ‘correlation length’is not necessarily defined
on the basis of the moments gf; it was recognized long ago by Halperin and Hohenberg
[17] that it makes sense to speak of a correlation length even in the case when correlations
exhibit a power-law decay, as is the case for low-dimensiorta) &mmetric ferromagnets.

We stress that fa# = 3 the behaviour of (k) is similar to that found by Vakst al [15] for

a Heisenberg ferromagnet, based on renormalized microscopic theory of spin-waves.

2. Transverse and longitudinal correlations in the generalized spherical model

We considemn-dimensional spinsg, € R", x € A, living on the finite setA, subject to the
constraint:

G2=n Vx € A (2.1)

a priori distributed with the uniform measuye on the sphere of radiugs, in an external
magnetic field along the direction:

1
Jn
Also, we fix some orthogonal directiai (¢2 = 1,¢, - é = 0).

The interaction Hamiltonian is

Ham=—3 Y JuGs-Gy— Y n'’h,é-G, (2.3)

x,yEA xeA

E:

1,...,1) eR". (2.2)

whereJ, = (Jyy)x yea IS the coupling-constant matrix, which we suppose to be ferromagnetic
(Jxy = 0, J,x = 0) andh, > 0. We denote byf, , the free-energy density

Fan B dn ) = =l [ exp-pria) [ duG) (2.4)
XEA
and by(—) , the Gibbs state corresponding#f, .

As shown in [9], fa.., and all its derivativesconverge aga — oo to the free energy of
the Gaussian model (1.1) and (1.2), i.e. to

fa(B,h) = (BIAD I det(%XA) — @ADTH R, (X)) — @ADTHR(XA)  (2.5)
and, respectively, to its corresponding derivatives, e.g.

—IALlim 3, fan = —|A10g, fa(B. h) = [(X2) " h]x =2 (s (2.6)
—IAL M 87, fan = —IAIF ) fa(B. 1) = (Xa +2BMAPAMA) ! = (Xn)y-  (27)

Here, we have denoted B, the matrix with diagonal elemengs, with off-diagonal elements
—Jyy, and satisfying the local conditions (1.2), i.e.

BHX A =1—[(Xp)Mh)? x € A. (2.8)
Also, we introduced the matricéd, and P, defined by
MA = ((mA)xaxy)x,yeA (PA)_l = ([(XA);Vl]Z)x,yEA' (29)

Note that, due to thé dependence of,, the local susceptibilitieg)‘c‘y do not coincide
with the local susceptibilities of the Gaussian model (1.1), i.e. with

B(SkSy)y, = (Xa)gy =t (X3 (2.10)
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which is usually taken as the susceptibility of the spherical model. From the results summarized
above one sees that, for the generalized spherical model, this is not the only susceptibility
worth studying ,X)'r'y being expected to play at least an equal role in the transition. The physical
meaning ofx,l'y andxjy is further revealed by considering the equilibrium states.

The equilibrium state$—), , converge as — oo to an infinite product of copies of
the Gaussian equilibrium state of the model (1.1) and (1.2). In fact, much more is proved in
[9]: all n-vector equilibrium expectations of finite products of spin components have complete
asymptotic series in powers &fn. We write for further reference the first terms of the
expansion for the one- and two-spin correlations:

(0l), = (Sehm, — (2nB) "0y, (log detH,) + O(n~?) (2.11)
(0100 )s = 8 (Sc Sy, — (B 8,,02 ;. (10g detH,) + (HAd, ya. 31, ya)] + O(n 7).
(2.12)

Here,ya = (v:(B, h)).ea denotes the diagonal vector &f, and
(Hp)xy = 3((Xa) )%+ BUX ) ) (Xa) 1 (X)), (2.13)

In this paper, we consider the equilibrium distribution of the projections, aflong the
two directionsz, ¢, introduced above:

%_x =c- 8x - (E : &X)A,n Nx = ZJ_ '6x ()C € A) (214)

We viewé = (£.).en, 1 = (x)xea as vectors iR and denote by, -) the usual scalar
product inR”. Equation (2.12) allows us to calculate the correlations, afin the limit

. 1y . 1, .
n“_r)noo(sxé,v)A,n = E(XA xy nll_r;noo<77xny>A,n = E(XA )xy nlinoo@xn)r)A,n =0
whereby it is seen that the corrections of ordén Sum up in a non-trivial contribution to
Iimn%oo(éx%‘y)ﬁ/\_n .

The following proposition can be easily derived and extends the results of [9], to
characteristic functions, i.e. to all correlations.

Proposition 1. LetA, u € R*. Then,

. . 1
lim (expil(x, &) + (. MD) an = eXp—%[(/\, XA+ (e, xin)]  (2.15)
implying that the random vectois, n converge in thg—)4, ,-distribution to independent
Gaussian vectors with covariance matric;e,‘é X i, respectively.

This result shows that the spherical model should be viewed rather as a pair of independent
Gaussian models, the Hamiltonian for theariables being (1.1), and for tli§evariables being
I _ 1 I'y—1
Hy = 3(& (xa) 7).
A few remarks are in order.

(a) Both thet andn variables are coupled ferromagneticallyhis is trivial for then’s, as
the off-diagonal elements df, are just the original-J,,. For the’s this follows from
the fact thatP, has non-positive off-diagonal elements (it is®amatrix, cf [9]).

(b) The fluctuation relation is fulfilled in the generalized spherical model with the fluctuation
variablesg.
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One has to check that-1/|A|) Z (E:&y) ¥l equals the second derivative of the free
energy with respect to a uniform magnet|c field added to the originahis is obvious, as the
&'s are correlated with the Hessian fA| f5 (8, k). This remark is relevant in connection
with the comments (cf, e.g., [18]) concerning the violation of the fluctuation relation in the
mean spherical model.

We shall restrict ourselves henceforth to the (physically most interesting) case of spins
living on the latticeZ? with translation-invariant interactions and external figid & /). We
takeA = Ay = {0,1,..., N — 1}¢ and impose periodic boundary conditions. Thereby,
we consider for simplicity nearest-neighbour interactiahs: = (2d)~J, if x, y are nearest
neighbours on the torusy andJ,, = 0 otherwise, and také = 1. In view of the uniqueness
of the solution of the system (2.8), the spherical fields8, i) arex independent:

2B, h) = 1+za(B, ) (2.16)

and X, is diagonalized by Fourier transformation: denotiBg = (27/N)Ay, the
eigenvalues oK , are{z, (8, h) + w(k)}ep,, Where

1 d 2 d n2 ke
ky=1-—d" Cosk® = — sin® —. 2.17
o (k) ; y ; 5 (2.17)
The system (2.8) reduces to one equation:

h 2
— —d "
Z - w(k) ( ) (2.18)

keBy z

which has a unique positive solutian= z, (8, h). Hence one obtains Fourier representations
of all the quantities of interest. We mention, for further reference, that the ntroefined

in equation (2.9) is diagonal in the same Fourier basis and its eigenvijugs)}cs, , are
given by the convolution

1

. 2.19
wA(k) N“ Z ‘ [za to(@]lza t ok —g)] @19
We consider now the thermodynamic limN, — oo. In the ‘regularity region’:
{h # 0} U {,B < Be(d) := (Zn)_df idk} (2.20)
gt (k)

whereB¢ = [—m, )¢, the unique solution, (8, 1) of equation (2.18) is bounded away from
zero uniformly inN and converges a8 — oo to the unique solution = z(8, h) > 0 of the
limit equation:

-1 —d 1 _ 2
B12n) /de+a)(k) dk = 1— (h/2)2 (2.21)

Hence, the thermodynamic limit is straightforward, a)ab, X1+ converge, respectively,
uniformly on the compacts of the region (2.20), to the real-analytic functions:

B 1 expik(x — y))
X = 1B = / s (2.22)
1 expik(x — y))
I — h / 2.23
X =B =5g | 1) + (k) + 2Bm2(B. )@= pm (k) (2.23)
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where
1 _ 1 / 1 d
otk @0 Sy ro@ltok—]

Ford = 1,2, 8.(d) = oo, and the regularity region (2.20) covers the whole parameter
spaceg > 0,h € R. Ford > 3, we haves.(d) < oo, and there will be a phase transition
region{s > B.(d), h = 0}, which we shall approach by taking the limiit\, 0 in the above
expressions. Of course, as seen from equation (2.214 fer 8.(d), one has spontaneous
magnetization, i.e.

/ - (d
m(B,h) =h/z(B,h) \\m(B,0) = |1— 'Bé ). (2.25)

In the regularity region (2.20)@ andxl‘y have exponential decay, i.e. finite correlation
length:

(2.24)

S LD 0] D S,
le—yl>oo  |x — ] ALI(B, h)

This follows at once from the fact that(k) andg, (k) (for z > 0) are real-analytic functions
on the torusB¢. While an explicit formula fon (8, 4) is hard to find ind > 1, one can
hopefully control their behaviour whei, ) approaches the transition region. As it happens
that A+ — oo when approaching in a certain way a given paift0), 8 > B.(d), two
problems of physical interest arise:

(2.26)

(a) the asymptotics of;' (8. 0) i.e. the decay of the correlations in the poit 0);
(b) the possible scaling regimes (continuum limits) arogado).

In the following sections, we consider these problems(ﬂbr as the behaviour qfxi) is well
studied [2].

3. Decay and scaling far from the critical point

In this section we consider the asymptotic behaviouk as oo, 1 N\ 0 of ng(ﬂ, h) for
B> Be(d),d > 3.

The natural framework for the scaling problem (b) is distribution theory. Dgt=
D(RY\{0}) and Dy its dual. A function on the latticg : Z¢ — C defines a distribution
Y ez f(x)8, € DY, which will also be denoted by. We adopt the following conventions.

Definition 1. A family of functions on the latticg,(z, -), is said to scale in the limi — O, if

there exists a functioh(z) with lim,_,o A(z) = oo and a function FR4\{0} — R, defining a
distribution F € DY, such that the distributions(z) ¢ Y ez f(z,%)8x 52 converge irDy

to F,i.e.if, forall¢ € D3,

im )7 3 fGxpe/m@) = [ P o d. (3.1)
= Rd

xezZ4

The shorthand notation for equation (3.2) is
Dy — Iimof(z, xA(2)) = F(x). (3.2)
7—

The same frame allows a great simplification in finding the solution to problem (a), also,
however, with convergence in a weaker sense. Namely, we adopt the following definition.
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Definition 2. For a functionf : Z¢ — C, we shall say thaDy'-lim, o f(x) = L, if
x"l“oo’vd Z f(xX)p(x/r) =L / ¢ (x)dx = L(27)*%¢$(0) V¢ € D5. (3.3)
xezd

The existence of the usual lim ., implies, of course, the existence of the/-lim,_,
with the same value. The converse is not true without further hypotheseg(e)g= (—1)“
hasDy-lim,_, equal to 0, but no limit. In fact, the above definition implies an averaging
process over a ‘macroscopic’ scale.

The results of this section are contained in the following two propositions, answering the
problems (a) and (b), respectively, f8r> B.(d). For the sake of comparison we also give
the analogous results fog- .

Proposition 2. In the sense of definition 2:
DY — lim x| 2x5.(B,0) = Ky (3.4)

X—>00
1 2

Dy — lim X1 X0, (B, 0) = WKd

(3.5)

whereK,; = T'(d/2 — 1) /4n4/?.

In considering the scaling limi \, O at fixedg > B.(d), we shall take advantage of
the one-to-one correspondence betwieandz in the regularity region and of equation (2.25)
to take as the scaling parametetself. Thereby, we omit mentioning theedependence and

denotey -z, x) := xo," (B, h).

Proposition 3. In the sense of definition 1:
D — lim 202y (2. x/7) = GUx) (3.6)
Z

D —lim 2>y x/ V) = Gxy? (3.7)

1
2B8m(B, 0)2
whereG (x) is the Fourier transform of2r)~4/%(1 +k2/2d)*l (i.e. G(x — y) is the kernel of
(1—(1/2d)A)~tin L?(RY)).

The proofs of equations (3.5) and (3.7) have, technically, very much in common, so we
start by making a few preparatory remarks, useful in both cases.

Both equations (3.5) and (3.7), when compared with (3.4) and (3.6), respectively, say that
x has the same behaviour gs-)2/28m (B, 0)>. Upon looking at equations (2.22)—(2.24)
and remarking that /4. (k) is the Fourier transform ofx*)2, one has in fact to show that
z+w(k) in the denominator of equation (2.23) is irrelevant in the considered asymptotics. We
therefore make the following expansion:

1 _ 1 S zrok/n) T
z+w(k/A) +2BmPp.(k/2) — 2Bm2p.(k/}) jz_(:)[_ Zﬁmzwz(k//\)}

+[ z+w(k/1) ]S 1
2Bm%p,(k/2) | z+ o (k/2) +2Bm2p (k/1)
and we have to show that only thie= 0 term contributes to the limit.
The next remark is related to tHi&;'-convergence, i.e. with the fact thain the left-hand
side of equations (3.1) and (3.3) has compact support far from 0, implying that all singularities
developed (typically, in lower orders iry4) at the origin are wiped out. As we can view the
distributions in both sides as being restrictions of distributior®/jnwe can go to a Fourier

(3.8)
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representation. Technically, the restrictiongtoe D means that all moments g@f vanish,
therefore one can subtract at will polynomials (entire functions) from the Fourier transform
of the considered distribution without altering its restrictiorZtp. This suggests that it is
appropriate to make a Taylor expansion of the Fourier transform. We write down below, for
further use, the expansion ofd, (k/1). To this end, we introduce the following notation:

_1)i+n/2 d o
N s > (ke)' SiN(qa) (i odd)
o (g; k) = <£> [w(g — 0k)]lo—0 = (12 et | (3.9)
—— ) (k)'cosqu) (i even.
a=1

w¥(q; k) are homogeneous polynomialsigfin terms of which one has, for all> 0, g # O:

m—1 p _ ) . .

SRS Lo k)

Trolg—kh) T Trel) S A Gre@)r?
[1+~~~+I'p:n

1
+ do (1 —g)"1
m/o (1-0) >

P>Linip>1
i1+---+i,,=m

P (~0 (g — Ok/ns k/2)/i}Y)
(z+w(g — 0k/2))r*t

(3.10)

Insertion of equation (3.10) into the definition (2.24) provides a Taylor expansigtpofkl/ 1),
whenever the integrals overin all terms are convergent. This always happenssif 0. For

z = 0, the integrability ay = 0 is established using the following elementary bounds valid
for g € B%:

2 @)y |kl lq] (i odd)
w(gq) = clql |0 (g: k)| < { i i even. (3.11)
Finally, one obtains
1/(,02(]6/)\,) = Pﬂl(Zv k/)") +Rm(Zak/)\) (312)

with P,(z,-) a poIAynomiaI of degree: — 1, which can be discarded whenever we integrate
with a function inDj; therebyn is arbitrary, ifz > 0, but is dimension dependentzit= 0.
With this preparation, we can proceed to the proofs.

Proof of equation (3.5). Applying equation (3.5) t¢ € D as in definition 2 and remarking
that|x|%~%¢ (x) D5 and its Fourier transform iS—A)dfqu&, we go to a Fourier transform
on the left-hand side, and obtain

—d 2d-4_ | _ Ad—4 / (—A)*2¢ (k)
) );de Xoi B 000 (/2) = 5= | T + 2m B O2antiny N G119

We have to show that this converges to

s o e [ vato oy (3.14)

whereyy, is the fundamental solution ¢f-A)4—2y, = § [19]:

Aglk|i=* (d odd)

Valk) = { Bylk|9=*In |k| (d even.
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With this aim, we use the expansion (3.8) with= 0, and withs chosen so large that the
last term can be shown, by simply applying the dominated convergence theorem, to give no
contribution to the limit (i.e. to dominate th&—4 in front of equation (3.13)). This is possible,
because (k) is bounded below and above on compactsiytimes positive constants, and
thence Ygo(k) is bounded by Alk| ind = 3, by|In|k|| ind = 4, and by a constant i#h > 5.
Therefore, one has= 1 ford = 3,4, ands = [3d] — 1 ford > 5.

The next step consists in performing the Taylor expansion. We start by considering
1/¢0. As already remarked, aterén, . .., i,) of the sum in equation (3.10) enters the Taylor
polynomial if it provides a convergent integral. A power counting using equation (3.11) shows
that this happens whenevesqq > 2p — d + 4, wherenqqq is the number of odd indices
among(iy, ...,i,). ASneven+ nodd = p and Aieven+ nodd < m, it follows that this happens
if m < d — 4. Moreover, ifd is odd, the § — 4)-term vanishes by symmetry. Therefore,
by choosingn = d — 4, ford even, andn = d — 3, ford odd, one can replace/¢o(k/A)
by R, (0, k/1). Moreover, by the same power counting, all ter@s. . ., i,) of R,,(0, k/1),
but those with Beven+ noqqg = m, lead, by dominated convergence, to polynomials and can
therefore be discarded, too. The contribution gpdlto the limit of equation (3.13) is thus
given by

lim —— d=4(p —d/Z/ R, _A)24 1
Jlim 55m(B. 0)2)‘ (2m) - (k/2)(—=A)“¢ (k) dk (3.15)
wherer?=*R,, (k/2) is (after a translation in the integral ovBf) a sum of terms of the form

L0, k) = 2474 f "4 (1—6)"1 / 0@ (q; k/W)*P 0@ (q; k/M)"P
o 0 B ()" w(q +0k/1)

1 (1)( . k)Zp—mw(Z)(q. k)m—p
= 1—gmt [ 22T : 1
/o W= /Bd A=+ (g)r+w (g + 0k/2) % (3.16)

with m/2 < p < m. The following limits are immediate:

. k 1
lim Azw@(i; —) =—Zgk =a"P(q,k)

hee AoA d (3.17)
N1 '

lim ,\Zw@(%; X) - Ekz =@ (q, k)

—00

wherea (k) := (1/2d)k? ando® are defined in terms @b by analogy with equation (3.9).

For d odd, after going to the variablér/|k|)g, denotingk = k/|k|, and using
equation (3.17) in conjunction with equation (3.11), one can apply dominated convergence
to show that/,(x, k) converges for every # 0 to v, (k) = Agqlk|?* times a constant
depending orp andd. Namely,

(qK)Zp—d+3

s 20D (q +0r)2 (3.18)

1
lim 1,(x, k) = [k|‘427*2q? / do (1 - 6)4* /
h—oo 0 R
The limit in (3.15) follows from dominated convergence, with the boundogprovided by
(—A)?2¢ € S(RY).
The case of eved is slightly trickier. One can verify (using as above the dominated
convergence) that, by subtracting

! W (g k)20—d*40@ (5 k)d—4—p
qu,k):/ de(l-@)“"5/ WD BP0 T
0 BIN{lq|=Ik|/A) w(q)?
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one has lim_,[I,(A, k) — J,(A, k)] = C|k|?=4, which is a polynomial, hence it does not
contribute to the limit of (3.15). In turnf, (1, k) behaves like

2P+2d2/1d9(1 B 9)‘1_5/ (qk)Zp—d+4k2(d—4—p) dg—C |k|d_4|n @
0 (121q1>1k1/% q2r*2 ’ A

in the sense that the difference converges to a polynomial which gives no contribution.
Note that, in order to obtain a term proportionaltg(k) = B,|k|¢~*In |k|, we have to extract
here, besides the Taylor polynomial of degdee5, also the diverging ter@, [k|Y=*In(1/x),
which, however, gives zero identically when integrated witih )?~2¢. For alld the constants
C, in front of ¥, (k) sum up to provide the valuﬁj appearing in equation (3.5), but we shall
not follow this calculation. O

This finishes the proof of equation (3.5) = 3, 4, 5. Ford > 5, we still have to show
that the termsg = 1,...,s — 1 in equation (3.11) do not contribute to the limit. We have
shown above that

1/go(k/A) = P (k/A) + Ry (k /) (3.19)

whereP,, is a polynomial, eventually including the terr@s |k|“~*In(1/1) subtracted in the
case of eved, and lim,_, o, 2%~ *R,, (k/%) = (27)? K24 (k). Hence,

K Tok/m) j|j d—4 i p j+1 4 3 d—4 5 i
=A k/3)! P (k/2) L+ A4 R, (k /Mo (k/2) S (A, k 3.20
(ﬂo(k/l)[(po(k/)\') (k/A) Py (k/A)"" + (k/Mwk/A) S, k) (3.20)

where S contains terms of the fornk,,(k/A)" P, (k/A)~" (r > 0). The first term in
equation (3.20) vanishes when integrated withA)?—2¢. For the second term, one uses
w(k/A) < |k|?/A%?and|P,, (1, k)| < C(L+|k|)™ In A, to show that it is uniformly polynomially
bounded and goes to 0 as— oo, and hence the assertion follows.

Proof of equation (3.7). Going to the Fourier transform in the left-hand side and applying
definition 1 withi(z) = 1/./z, i.e. takingz = 1/12, we have to calculate, fa¥ € D3

lim A (k)
r=o00 (2m)12 Jpa (1/M)2 + w(k/2) +2Bm(B, 0)2p1 32 (k /1)

dk. (3.21)

We proceed as before with the expansion (3.8), followed by the Taylor expansion (3.12). We
note thatn is arbitrary in equation (3.12), as there are no convergence problems at the origin.
We start by considering the contribution of the first term of equation (3.8). One has to
calculate
; - 2 -1
/ Hj-’:1<—w<~><q — ek/x, k/x)/z,-n
bt 02+ 0 (@) 02+ wlg — 0K/ T

y (3.22)

p2Lir,.ip>1
iyt =m
If m > d — 4 (to ensure a negative power ofn front), all terms which lead to convergent
g-integrals, or to at most logarithmic divergences, converge to zero. We use the same power
counting as in the previous proof to show that this disposes of all terms in the sum with
Nodd = 2p — d + 4. Let]?m(l//\z, k/X) denote the sum of the terms witQyy < 2p — d + 4.
After operating the change of variahje—~ Ag — 6k and rearranging the-factors in such a
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way that the pointwise limit of the integrand becomes obvious by use of equation (3.17), we
have

1
lim AR, (1A%, k/A) = lim m/ do (1 —6)"1

[T)_1 (=220 (g /ns k/2) /1)
> / p (L+220((q +0K) /) (L + 32 (g /M)
where the sumrunsover> 1,iq,...,i, > 1,i1+---+i, = m, nodd < 2p —d +4. Thereby,
we remark that, in view of equation (3.11), only the terms withi a# {1, 2} have a non-zero
pointwise limit. By choosingn sufficiently large to ensure the integrability ¢nat oo, one
obtains, taking into account that for > 2, @) = 0:
d—4

H 2 7 _ 1 f I /1 _ pyn—1
lim i /Rd R (/32 k) dk = 5o | dkidom | doa—o)

. 15 (=0 (q: k)/i;Y) g (3.23)
por oy Je @B 0K+ () 7 '

iyt =m

In fact, an analysis similar to the one given in the proof of equation (3.5) shows that the other
terms of equation (3.8) give no contribution, so that equation (3.23) provides the final result
for the limit (3.21).

In order to see that this equals the right-hand side of equation (3.7), we have to express the
latter as a Fourier transform. A&#&(x)?is notlocally integrable at 0, aregularization is necessary
in order to extend it to a distribution iR, allowing us to use the Fourier representation. For
instance, fog € Dy:

_ 2
[ cerpwar=im [ [ awomA ], ) 40,
Rd d JRd (27'[8)/

=i [ [ S 1 S APYY (3.24)
0 Jpo Jre A+ d(@) A +a(g — k) 7 '

As ¢ € DS, we can write the Taylor formula to order aroundk = 0 and retain only the
remainder. By choosing as before, the integrability ab is achieved, and the application of
the dominated convergence theorem yields the right-hand side of equation (3.23). O

Remarks

(a) As already pointed out, proposition 2 states that, in the ordered phases., h = 0),

x), ~ |x|724=2 (|x — y| - o0). Hence, the correlations of the longitudinal fluctuations
decay faster than those of the transverse fluctuations, but still obeying a power law. For
d>5,% x4 < oo, i.e. the longitudinal fluctuations have summable clustering, leading
to normal magnetization fluctuations. dn=3and 4,3, _, x4, diverges linearly and,
respectively, logarithmically ab — oo, leading to abnormal magnetization fluctuations.

(b) The scaling relations in proposition 3 control the cross-over from the exponential decay
(ath > 0) to the power-law decay (at = 0), showing in particular that the correlation
lengthsal-+ ~ C(B)I-L /R forh \( O, B > B., whereC (B)+ = 2C(B)!.

(c) The Fourier transforms qf(',');L equal, respectively, by equations (2.22) and (2.23), the
inverses of the dispersion laws of the corresponding Gaussian models. The divergence of
At ash N\ 0 and the power lavi |~ for xg. (B, 0) are taken care of by the ‘softening’
of the transverse modes as\, 0, 8 > B., z(8, h) ~ h/m(B, 0). This is no longer true
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for the longitudinal fluctuations, where the divergencelofisi N\ 0 and the power law
x| for xJ (B, 0) are explained by the non-analyticity which appeafs2t0in g, (k)
asz \( 0. Maybe unexpectedly, faf > 5, in spite of the fact that the dispersion law still
has a ‘mass’ Bm (B, 0)°¢p0(0) > 0 atz = 0, the decay oﬁ((','x(ﬂ, 0) is not exponential.
This behaviour agrees with the predicted one (see [20]), and constitutes a proof of the
latter in the larges limit

(d) Our results complement the heuristic picture forthector model based on the ‘spin-
wave picture’ or the Goldstone one (see for instance in this respect the textbooks by
Negele and Orland [21] and Zinn-Justin [22]). They show that indeed the two-point
truncated correlation functions have an exponential fall-off with a decay rate proportional
to v/A on the critical line, far away from the critical point, while at the critical point
the truncated correlation functions have a power-law decay, reminding one of the one
obtained in asymptotically free massless theories, dictated by the behaviounof?.
Seemingly, the Goldstone picture is contradicted by only one rigorous result obtained
for the hierarchical model by Schor and Carroll [23], where the truncated correlation
functions parallel to the spontaneous magnetization have a rather strange behaviour. The
explanation is that their behaviour is controlled by a non-canonical Gaussian fixed point,
which is a property specific to the hierarchical model and is by no means expected to hold
in the complete:-vector models.

4. Scaling at the critical temperature

Forh =0, 8 < B., one hasn(B, 0) = 0, x(','x (B,0) = xolx(ﬁ, 0), hence thédarge-x behaviour
at the critical point(8., 0) and the scaling from the paramagnetic side is taken care of by
equations (3.4) and (3.6)\Ve shall therefore consider only the scalingxéj(ﬂ, 0) from the
ferromagnetic sidg \, .. It turns out that the scaling functions are qualitatively different
ford = 3,4 andd > 5.

We take as a parametee= 8 — 8. and denote((gx (B,0) = x(z, x).

Proposition 4. In the sense of definition 1:

. 1 exp ikx .
DY —limttxV, x/1) = [ dk f d=3 4.1
¢ D = 5 J T g | @

D’ ~lim @X" (z, x,/“?—”) = (x2/8)"* G (x/72/8) it d=4 4.2)
D' —lim 172y ¢, x /) = (2p0(0)"* 7Gx/ 200(0)) if d>5 (4.3)

wheregG is the same function as in proposition 3.
Proof. After applying definition 1 (with parameterandA(¢) as indicated in equations (4.1)—

(4.3)) to a certainp € D5 and going in the left-hand side to Fourier transforms, the result
follows by dominated convergence in

. -2 d(k)
"0 @y /R w(k/n) + 2rgotk/h) 44)

The integrability abo being ensured by, one has to care only about the smiabehaviour.
This follows immediately fod > 5, and for the other cases is accomplished by calculating
the following limits: lim_.q|k|/@o(k) = %, ford = 3 and lim_o | In |k||o(k) = 72/8, for
d=4. 0
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Remarks

(a) The meaning of the scaling relations in proposition 4 is that it makes sense to speak about
a diverging correlation length of tHengitudinal fluctuations, also when approaching
the critical temperature from the low-temperature side, in spite of the power-law decay
given by equation (3.5). This can be takenidis) of proposition 4, i.e. 1r ind = 3,
JTInt[/t ind = 4 and ¥4/t ind > 5. With this interpretation, the comparison with
the high-temperature scaling law, obtained from equation (3.6) and the relation between
zandt < 0 given by equation (2.21) at= 0, i.e.

. —t 1 1
m =z = (21)3 /1;3 B (L +ak)) dk @=3

—t 4
lim = — d=4
t/0z|Inz] w2 ( )
—t 1
lim — = (d=>=5)
170 z  ¢o(0)

shows thathe symmetry of the correlation length critical indices on the two sides of the
critical temperature is restored

(b) For alld > 3, the homogeneous functign|>~¢ appearing in the behaviour of the scaling
functions around: = 0 has the same order as the one appearing in the ladgeay of
the correlations at the critical point, equation (3.4). The fall-off at infinity of the scaling
function is exponential fo# > 4, but power law fod = 3. In the latter case,

1 f expikx 3 si(8lx|/3)cosBlx|/3) — sin(8lx|/I)ci(Blx|/3)
r)3 Jps Lk2+ 4k w2 |x|

has the fall-off|x| =2 characteristic of the decay of the longitudinal correlations in the
ferromagnetic phase, equation (3.5), tlke scaling function describes the cross-over
between the two regimeg8 = 8. andg > B..

(c) The behaviour of the longitudinal correlation functions in three dimensions have also been
studied recently by Garanin [24] in the context of the anisotropic spherical model. It has
been found that for small wavevectors the longitudinal correlation functions show a non-
trivial behaviour in the ordered phase caused by spin-wave fluctuations, reinforcing the
spin-wave theory of [15], a behaviour we also found in our study of the isotropic spherical
model.
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